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LETTER TO THE EDITOR 

Mean end-to-end distance of branched polymers 

S Redner 
Department of Physics, Boston University, Boston, Mass. 02215, USA 

Received 25 April 1979 

Abstract. We use Monte Carlo methods to calculate the mean end-to-end distance of 
randomly branched polymer molecules. Molecular realisations are brown on the square 
and simple cubic lattices, and consist of N bifunctional monomers and N, polyfunctional 
branching units of functionality f. We treat three cases in which the monomer branches are 
either random walks, self-avoiding walks (saw), or SAW'S except that different branches 
may join at their end points to form closed loops. For the first case, we find that the mean 
end-to-end distance L varies with N as L - for fixed branching probability p ,  
consistent with previous theoretical predictions. For the latter two cases we find that for 
fixed p .  L - N u ,  where Y = 0.57 i 0.06 on the square lattice and 0.45 *0.06 on the simple 
cubic lattice. Although the number of closed loops formed per realisation is quite small, it 
does appear possible that loop formation may play a dominant role in the N+oo limit. 

An important class of polymer configurations is formed when N bifunctional monomers 
and Nf polyfunctional branching units of functionality f connect in a random way to 
form a branched structure (see figure 1). The theoretical treatment of such randomly 
branched polymer configurations was initiated by Zimm and Stockmayer (1949), who 
calculated the radius of gyration when the number of polyfunctional units is a small 
fixed number. Subsequently, de Gennes (1968) considered a more general problem in 
which the number of branching units is variable. Using diagrammatic techniques, de 
Gennes calculated the probability distribution for the branched structure given the 
probability distribution function for the linear chain. 

These two analyses were restricted only to the case in which the monomer branches 
formed random walks. (This is often called the 'Gaussian' branched polymer.) This 
approximation is used to describe the theta temperature, where the Van der Waals 
attraction of neighbouring molecules is balanced by the excluded volume constraint. 
Under this restriction, de Gennes showed that the mean end-to-end distance L varies 
as t 

L - N "G(Nf)-w ( l a )  

where vsc=;  is the exponent for the single-chain random walk, and (U = a  in all 
dimensions d. Thus for a fixed number of branching units single-chain behaviour 
occurs. If N, is not fixed, but is determined by a random probability, then (N , )  - N and 
hence equation ( l a )  can be rewritten as 

L - N u .  ( I b )  

t This result was derived only for the case of branching units with functionality f =  3. It is possible to 
generalise de Gennes' analysis, and show that the exponents are independent off. 
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Figure 1. ( a )  The constitutents of the branched polymer are the bifunctional monomers 
(represented by a bond), which react to form the branches of the polymer, and the 
f-functional branching units (represented by a site). We assume that all the chemical bonds 
of these units react immediately, so that it may be represented as a site with f monomers 
(shown as broken lines) attached. ( 6 )  Schematic structure of a typical polymer molecule for 
a random branching process. The molecule is drawn in a suggestive fashion to illustrate our 
growing algorithm. One of the branches is chosen at random to be 'current'. At the end 
point of this branch (shown by the bold line), a branching unit is added with probability p or 
a monomer is added with probability 1-p. (c) Example of a self-avoiding branched polymer 
on the square lattice. The arrow indicates where two branches have joined to form a closed 
loop. 

Here v = vsc - = a for all d,  in contrast with the single-chain exponent of v,, = $. These 
exponent predictions have recently been rederived by Lubensky and Issacson (1978),  
who used field-theoretical methods applied to a generalised spin model (Lubensky er a1 
1978) to treat randomly branched polymers and various related problems. 

In this Letter we present preliminary results of a Monte Carlo investigation of the 
mean end-to-end distance of randomly branched polymers when excluded volume 
effects are accounted for. We consider a lattice model with bifunctional monomers 
represented by lattice bonds, and polyfunctional branching units represented by lattice 
sites (see figure l(a)). The branches of the molecule are formed by monomers joining 
end-to-end. We assume that all the bonds of the branching unit react immediately, so 
that no further branches may originate from or terminate at a branching unit at a later 
stage. We first study the case when the monomer branches are random walks, where 
our Monte Carlo simulations may be compared with known results. Secondly, we treat 
the case of branches which are self-avoiding walks (SAW), in order to model the 
excluded volume constraint. Finally, we consider the case where different branches of 
the self-avoiding polymer may join at their end points to form closed loops. 

The Gaussian branched polymer. We grow molecules on a lattice using an algorithm 
which may be understood by considering the molecule after it has been partly 
constructed so that it possesses a tree topology (see figure l ( b ) ) .  One of the existing 
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branches is then chosen at random to be ‘current’, and a branching unit may attach to 
the monomer at the end point of the current branch with a given probability p .  If the 
branching unit does join, then z additional monomers? immediately attach, which 
radiate from the branch site, where z is the lattice coordination number. If the 
branching unit does not attach, then another monomer is added to the current branch. 
Finally, a new current branch is chosen and the process is repeated. 

Once a realisation is generated, the end-to-end distances are computed for each of 
the [ N f ( f -  2 )  + 2 ] [ N f ( f -  2 )  + 1 ] / 2  pairs of end points. We then calculate L by treating 
each pair as statistically $dependent$. We have taken data for 10 < N < 10 000 and 
0.001 < p < 0.2,  and from this information we have studied the dependence of the mean 
end-to-end distance on: (i) N with Nf fixed; (ii) N with p fixed; and (iii) ( N f )  with N fixed 
(see figure 2). For fixed Nf, we find the single-chain behaviour of L -NI’*. If p is fixed, 
then we find that L - N ” ,  with U = 0.26 f 0.04 and v = 0.29 f 0.04 for the square and 
cubic lattices respectively, consistent with equation ( l a ) .  Thus the effect of branching is 

2 1  I 1 1 1 1 1 1 1 1  1 I I 1 1 1 1 1 I  I I 1 1 1 1 1 1 J  

In <N,> 
1 10 lo2 103 

Figure 2. Dependence on InN and on In(N,) of In L for the Gaussian branched polymer. In 
the upper part of the figure, data from the square lattice are shown with the number of 
branch points fixed at 2, 10 and 40. A linear least-squares fit yields slopes of 0.512,0.530 
and 0.501 respectively for these data. In the middle of the figure, data are shown when the 
branching probability is fixed to be 0.01. The data is approximately linear with a slope 
determined by least-squares Ftting to be 0.26 and 0.29 on the square and cubic lattice 
respectively. In the lower portion, N is fixed at 500 and 2000 to investigate (N,) 
dependence. Data from the square lattice are fitted by lines of slope -0.31 for both cases. 

t Notice that one of the added monomers must retrace along the path of the current branch. This construction 
is the most natural for the random walk case, and the functionality is thus z + 1. 
$’ This procedure yields results that are virtually identical with the more usual method of weighting each 
molecular realisation equally. However, at large N, generation of each molecular realisation is relatively 
time-consuming, and thus to obtain sufficient data we utilise each pair as an independent realisation. 
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to shrink the molecules substantially. In fact, for d <4,  the Gaussian approximation 
predicts that the molecular size should be even more compact than a solid d-dimen- 
sional object. This indicates that the Gaussian approximation for the theta temperature 
will break down for d < 4. Finally, for fixed N, we find that L - (N)-&,  with /..L = 
0-31 * 0.04 for both lattices. This is slightly larger than predicted by equation (la) and 
we are not able to resolve this discrepancy at present. 

The self-avoiding branched polymer. In the self-avoiding case, it is most natural to 
consider now branching units with functionality z. We account for the excluded volume 
constraint in our growing algorithm by immediately discarding trials if branch inter- 
sections occur. Consequently, for large N, very few of the trials initiated become 
successful realisations. This attrition imposes severe limitations on the maximum 
molecular size that can be studied, and for this reason, our preliminary data is limited to 
N s 70t. However, even this data is sufficient to show the quantitatively new effects 
due to the excluded volume constraint. From studying the dependence of L on N with p 
fixed, we estimate that v = 0.57 * 0.06 on the square lattice, and v = 0.45 * 0.06 on the 
cubic lattice (see figure 3). These numbers are smaller than the best estimates of 
v,, = 0.74-0.75 and v,, = 0.59-0.61 for the single-chain SAW in two and three dimen- 
sions respectively (see e.g. McKenzie 1976, Moore and Bray 1978). Thus the effect of 
branching is again to shrink molecules, although not to the same degree as in the 
Gaussian case. Equivalently, we can restate this by saying that the excluded volume 
constraint is relatively more important for the branched configuration. 

We can gain some insight into this interesting result by considering separately the 
excluded volume constraint within each branch and the repulsion between branches. If 

I I I I I I l l 1  1 I 

In N 

Figure 3. Dependence on In N of In L for the self-avoiding branched polymer on the square 
and cubic lattice with p = 0.1. For the two lattices the data are fitted by lines of slope 0.57 
and 0.45 respectively. Data are shown for both the case of loops (0) and the case of no loops 
(0). 

t For the single-chain SAW, the attrition can be partially surmounted by employing sample ‘enrichment’ or 
‘dimerisation’ methods (Wall er a1 1963, Alexandrowicz 1969). A similar technique will be required to 
extend our study to larger N. 
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we neglect the second effect, then by using the probability distribution for the 
single-chain SAW (Domb et a1 1965, Fisher 1966, McKenzie and Moore 1971, des 
Cloiseaux 1974) we can generalise the diagrammatic treatment of de Gennes (1968) to 
find the mean distance of a branched polymer with SAW branches, but no repulsion 
between branches. We find for this structure that U = y/4 = $ and & for d = 2 and 3 
respectively, where y is the exponent that gives the N dependence of the total number 
of SAWS. Thus the repulsion between chains makes a major contribution in increasing Y 
from the mean-field value of $. 

We have also looked at the dependence of L on N with Nf fixed, and on ( N f )  with N 
fixed. However, in view of the difficulties in obtaining data consistent with equation 
( l a )  for the Gaussian branched polymer, we do not expect good estimates for p where 
we are limited to N c 70, and this was found to be the case. 

The self-avoiding branched polymer with loops. We have also studied a natural 
generalisation of the previous model, in which different branch ends may now join to 
form closed loopsi. In this case sample attrition is reduced, and we obtain data for 
Ns100.  We find that estimates for Y are virtually the same as those for the 
self-avoiding polymer without loops. It appears that the only effect of allowing loops is 
to reduce the molecular size slightly. 

It is most interesting, however, to investigate the dependence of the average number 
of loops (I) on molecular size. While this number is quite small, both the fraction ( I ) / N  
and the fraction of branches that form closed loops grow with N. Thus it is possible that 
in the limit of N + 00 closed loops may be very important (table 1). This feature is quite 
intriguing in the light of the recent work by Lubensky and Issacson (1979), who argue 
that the dilute limit of branched polymers with and without loops belong to different 
universality classes. According to our numbers, this difference is not evident at N = 100 
and it is likely not to be apparent until N is very large. 

We have used Monte Carlo methods to study the mean end-to-end distance of 
randomly branched polymer molecules. Three types of molecular configurations are 
considered in which the monomer branches are either random ‘walks, self-avoiding 
walks, or self-avoiding walks with the possibility that different branches may join at 

Table 1. Dependence of the average number of loops in the self-avoiding polymer on the 
number of monomers, and on the average number of branches. Data is from the cubic 
lattice, and the branching probability is fixed to be 0.1. 

N No. of loops/monomer No. of loops/branch 

10 0.006 0.018 
20 0.018 0.060 
30 0.022 0.077 
40 0.024 0.087 
50 0.024 0.097 
70 0.022 0.099 

100 0.031 0.133 

t In principle, this growing algorithm seems to be capable of generating all clusters that occur in the 
percolation problem. However, the statistical weights assigned to a given realisation in the two problems are 
different. Although the exponents quoted here yield a value for the fractal dimensionality for branched 
polymers that is close to that found for percolation clusters, the relation between these two problems has not 
yet been clarified (see e.g. Stanley 1977, Harrison er al 1978). 
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their ends to form closed loops. For the first cast we confirm approximately that the 
end-to-end distance varies as L - N1/2(Nf)-1/4 for both the square and the cubic lattice. 
The latter two cases are used to model excluded volume effects, and we find L - N u ,  
with Y = 0.57 f 0.06 and Y = 0-45 f 0.06 for the square and cubic lattice respectively. 
When closed loops are allowed, there is no change in our estimates for v. However, it 
appears that loops may become very important in the asymptotic N + CD limit. 

The author is grateful for many stimulating discussions with A Coniglio, M Daoud, 
W Klein, T C Lubensky, S Muto, H Nakanishi, P J Reynolds, H E Stanley and T Tanaka 
in the course of this work. The author also thanks D Stauffer for an informative 
correspondence. This work was supported in part by the ARO, AFOSR and NSF. 
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